bortezomib injection 1 MG and 2.5 MG VIAL Clinical Pharmacology

(bortezomib for injection)

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin-proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro. Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma.

12.2 Pharmacodynamics

Following twice weekly administration of 1 mg/m2 and 1.3 mg/m2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed five minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 mg/m2 and 1.3 mg/m2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m2 and 1.3 mg/m2 dose regimens, respectively.

12.3 Pharmacokinetics

Following intravenous administration of 1 mg/m2 and 1.3 mg/m2 doses, the mean maximum plasma concentrations of bortezomib (Cmax) after the first dose (Day 1) were 57 ng/mL and 112 ng/mL, respectively. When administered twice weekly, the mean maximum observed plasma concentrations ranged from 67 ng/mL to 106 ng/mL for the 1 mg/m2 dose and 89 ng/mL to 120 ng/mL for the 1.3 mg/m2 dose.

Following an intravenous bolus or subcutaneous injection of a 1.3 mg/m2 dose to patients with multiple myeloma, the total systemic exposure after repeat dose administration (AUClast) was equivalent for subcutaneous and intravenous administration. The AUClast geometric mean ratio (90% confidence interval) was 0.99 (0.80 to 1.23). The Cmax after subcutaneous administration (20.4 ng/mL) was lower than after intravenous administration (223 ng/mL) with repeat dose administration.

Distribution

The mean distribution volume of bortezomib ranged from approximately 498 L/m2 to 1884 L/m2 following single- or repeat-dose administration of 1 mg/m2 or 1.3 mg/m2 to patients with multiple myeloma. The binding of bortezomib to human plasma proteins averaged 83% over the concentration range of 100 ng/mL to 1000 ng/mL.

Elimination

The mean elimination half-life of bortezomib upon multiple dosing ranged from 40 hours to 193 hours after the 1 mg/m2 dose and 76 hours to 108 hours after the 1.3 mg/m2 dose. The mean total body clearance were 102 L/h and 112 L/h following the first dose for doses of 1 mg/m2 and 1.3 mg/m2, respectively, and ranged from 15 L/h to 32 L/h following subsequent doses for doses of 1 mg/m2 and 1.3 mg/m2, respectively.

Metabolism

Bortezomib is primarily oxidatively metabolized to several inactive metabolites in vitro via cytochrome P450 (CYP) enzymes 3A4, CYP2C19, and CYP1A2, and to a lesser extent by CYP2D6 and CYP2C9.

Excretion

The pathways of elimination of bortezomib have not been characterized in humans.

Specific Populations

No clinically significant differences in the pharmacokinetics of bortezomib were observed based on age, sex, or renal impairment (including patients administered bortezomib after dialysis). The effect of race on bortezomib pharmacokinetics is unknown.

Patients with Hepatic Impairment

Following administration of bortezomib doses ranging from 0.5 mg/m2 to 1.3 mg/m2, mild (total bilirubin ≤1× ULN and AST >ULN, or total bilirubin >1× to 1.5× ULN and any AST) hepatic impairment did not alter dose-normalized bortezomib AUC when compared to patients with normal hepatic function. Dose-normalized mean bortezomib AUC increased by approximately 60% in patients with moderate (total bilirubin >1.5× to 3× ULN and any AST) or severe (total bilirubin >3× ULN and any AST) hepatic impairment. A lower starting dose is recommended in patients with moderate or severe hepatic impairment.

Drug Interaction Studies

Clinical Studies

No clinically significant differences in bortezomib pharmacokinetics were observed when coadministered with dexamethasone (weak CYP3A4 inducer), omeprazole (strong CYP2C19 inhibitor), or melphalan in combination with prednisone.

Strong CYP3A4 Inhibitor

Coadministration with ketoconazole (strong CYP3A4 inhibitor) increased bortezomib exposure by 35%.

Strong CYP3A4 Inducer

Coadministration with rifampin (strong CYP3A4 inducer) decreased bortezomib exposure by approximately 45%.

In Vitro Studies

Bortezomib may inhibit CYP2C19 activity and increase exposure to drugs that are substrates for this enzyme.

Find bortezomib injection 1 MG and 2.5 MG VIAL medical information:

Find bortezomib injection 1 MG and 2.5 MG VIAL medical information:

Our scientific content is evidence-based, scientifically balanced and non-promotional. It undergoes rigorous internal medical review and is updated regularly to reflect new information.

bortezomib injection 1 MG and 2.5 MG VIAL Quick Finder

Prescribing Information
Download Prescribing Information

Health Professional Information

Clinical Pharmacology

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin-proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro. Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma.

12.2 Pharmacodynamics

Following twice weekly administration of 1 mg/m2 and 1.3 mg/m2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed five minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 mg/m2 and 1.3 mg/m2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m2 and 1.3 mg/m2 dose regimens, respectively.

12.3 Pharmacokinetics

Following intravenous administration of 1 mg/m2 and 1.3 mg/m2 doses, the mean maximum plasma concentrations of bortezomib (Cmax) after the first dose (Day 1) were 57 ng/mL and 112 ng/mL, respectively. When administered twice weekly, the mean maximum observed plasma concentrations ranged from 67 ng/mL to 106 ng/mL for the 1 mg/m2 dose and 89 ng/mL to 120 ng/mL for the 1.3 mg/m2 dose.

Following an intravenous bolus or subcutaneous injection of a 1.3 mg/m2 dose to patients with multiple myeloma, the total systemic exposure after repeat dose administration (AUClast) was equivalent for subcutaneous and intravenous administration. The AUClast geometric mean ratio (90% confidence interval) was 0.99 (0.80 to 1.23). The Cmax after subcutaneous administration (20.4 ng/mL) was lower than after intravenous administration (223 ng/mL) with repeat dose administration.

Distribution

The mean distribution volume of bortezomib ranged from approximately 498 L/m2 to 1884 L/m2 following single- or repeat-dose administration of 1 mg/m2 or 1.3 mg/m2 to patients with multiple myeloma. The binding of bortezomib to human plasma proteins averaged 83% over the concentration range of 100 ng/mL to 1000 ng/mL.

Elimination

The mean elimination half-life of bortezomib upon multiple dosing ranged from 40 hours to 193 hours after the 1 mg/m2 dose and 76 hours to 108 hours after the 1.3 mg/m2 dose. The mean total body clearance were 102 L/h and 112 L/h following the first dose for doses of 1 mg/m2 and 1.3 mg/m2, respectively, and ranged from 15 L/h to 32 L/h following subsequent doses for doses of 1 mg/m2 and 1.3 mg/m2, respectively.

Metabolism

Bortezomib is primarily oxidatively metabolized to several inactive metabolites in vitro via cytochrome P450 (CYP) enzymes 3A4, CYP2C19, and CYP1A2, and to a lesser extent by CYP2D6 and CYP2C9.

Excretion

The pathways of elimination of bortezomib have not been characterized in humans.

Specific Populations

No clinically significant differences in the pharmacokinetics of bortezomib were observed based on age, sex, or renal impairment (including patients administered bortezomib after dialysis). The effect of race on bortezomib pharmacokinetics is unknown.

Patients with Hepatic Impairment

Following administration of bortezomib doses ranging from 0.5 mg/m2 to 1.3 mg/m2, mild (total bilirubin ≤1× ULN and AST >ULN, or total bilirubin >1× to 1.5× ULN and any AST) hepatic impairment did not alter dose-normalized bortezomib AUC when compared to patients with normal hepatic function. Dose-normalized mean bortezomib AUC increased by approximately 60% in patients with moderate (total bilirubin >1.5× to 3× ULN and any AST) or severe (total bilirubin >3× ULN and any AST) hepatic impairment. A lower starting dose is recommended in patients with moderate or severe hepatic impairment.

Drug Interaction Studies

Clinical Studies

No clinically significant differences in bortezomib pharmacokinetics were observed when coadministered with dexamethasone (weak CYP3A4 inducer), omeprazole (strong CYP2C19 inhibitor), or melphalan in combination with prednisone.

Strong CYP3A4 Inhibitor

Coadministration with ketoconazole (strong CYP3A4 inhibitor) increased bortezomib exposure by 35%.

Strong CYP3A4 Inducer

Coadministration with rifampin (strong CYP3A4 inducer) decreased bortezomib exposure by approximately 45%.

In Vitro Studies

Bortezomib may inhibit CYP2C19 activity and increase exposure to drugs that are substrates for this enzyme.

Medication Guide

Health Professional Information

{{section_name_patient}}

{{section_body_html_patient}}

Resources

Didn’t find what you were looking for? Contact us.

MI Digital Assistant

Chat online with Pfizer Medical Information regarding your inquiry on a Pfizer medicine.

Call 800-438-1985*

*Speak with a Pfizer Medical Information Professional regarding your medical inquiry. Available 9AM-5PM ET Monday to Friday; excluding holidays.

Medical Inquiry

Submit a medical question for Pfizer prescription products.

Report Adverse Event

Pfizer Safety

To report an adverse event related to the Pfizer-BioNTech COVID-19 Vaccine, and you are not part of a clinical trial* for this product, click the link below to submit your information:

Pfizer Safety Reporting Site

*If you are involved in a clinical trial for this product, adverse events should be reported to your coordinating study site.

If you cannot use the above website, or would like to report an adverse event related to a different Pfizer product, please call Pfizer Safety at (800) 438-1985.

FDA Medwatch

You may also contact the U.S. Food and Drug Administration (FDA) directly to report adverse events or product quality concerns either online at www.fda.gov/medwatch or call (800) 822-7967.