TAZICEF - VIAL Clinical Pharmacology

(ceftazidime for injection, USP - VIAL)

CLINICAL PHARMACOLOGY

After IV administration of 500-mg and 1-g doses of ceftazidime over 5 minutes to normal adult male volunteers, mean peak serum concentrations of 45 and 90 mcg/mL, respectively, were achieved. After IV infusion of 500-mg, 1-g, and 2-g doses of ceftazidime over 20 to 30 minutes to normal adult male volunteers, mean peak serum concentrations of 42, 69, and 170 mcg/mL, respectively, were achieved. The average serum concentrations following IV infusion of 500-mg, 1-g, and 2-g doses to these volunteers over an 8-hour interval are given in Table 1

Table 1. Average Serum Concentrations of Ceftazidime
Ceftazidime IV DoseSerum Concentrations (mcg/mL)
0.5 hr1 hr2 hr4 hr8 hr
500 mg42251262
1 g603923113
2 g1297542135

The absorption and elimination of ceftazidime were directly proportional to the size of the dose. The half-life following IV administration was approximately 1.9 hours. Less than 10% of ceftazidime was protein bound. The degree of protein binding was independent of concentration. There was no evidence of accumulation of ceftazidime in the serum in individuals with normal renal function following multiple IV doses of 1 and 2 g every 8 hours for 10 days.

Following intramuscular (IM) administration of 500-mg and 1-g doses of ceftazidime to normal adult volunteers, the mean peak serum concentrations were 17 and 39 mcg/mL, respectively, at approximately 1 hour. Serum concentrations remained above 4 mcg/mL for 6 and 8 hours after the IM administration of 500-mg and 1-g doses, respectively. The half-life of ceftazidime in these volunteers was approximately 2 hours.

The presence of hepatic dysfunction had no effect on the pharmacokinetics of ceftazidime in individuals administered 2 g intravenously every 8 hours for 5 days. Therefore, a dosage adjustment from the normal recommended dosage is not required for patients with hepatic dysfunction, provided renal function is not impaired.

Approximately 80% to 90% of an IM or IV dose of ceftazidime is excreted unchanged by the kidneys over a 24-hour period. After the IV administration of single 500-mg or 1-g doses, approximately 50% of the dose appeared in the urine in the first 2 hours. An additional 20% was excreted between 2 and 4 hours after dosing, and approximately another 12% of the dose appeared in the urine between 4 and 8 hours later. The elimination of ceftazidime by the kidneys resulted in high therapeutic concentrations in the urine.

The mean renal clearance of ceftazidime was approximately 100 mL/min. The calculated plasma clearance of approximately 115 mL/min indicated nearly complete elimination of ceftazidime by the renal route. Administration of probenecid before dosing had no effect on the elimination kinetics of ceftazidime. This suggested that ceftazidime is eliminated by glomerular filtration and is not actively secreted by renal tubular mechanisms.

Since ceftazidime is eliminated almost solely by the kidneys, its serum half-life is significantly prolonged in patients with impaired renal function. Consequently, dosage adjustments in such patients as described in the DOSAGE AND ADMINISTRATION section are suggested.

Therapeutic concentrations of ceftazidime are achieved in the following body tissues and fluids.

Table 2. Ceftazidime Concentrations in Body Tissues and Fluids
Tissue or FluidDose/RouteNo. of PatientsTime of Sample Post DoseAverage Tissue or Fluid Level (mcg/mL or mcg/g)
Urine500 mg IM60 to 2 hr2,100
2 g IV60 to 2 hr12,000
Bile2 g IV390 min36.4
Synovial fluid2 g IV132 hr25.6
Peritoneal fluid2 g IV82 hr48.6
Sputum1 g IV81 hr9
Cerebrospinal fluid2 g q8hr IV5120 min9.8
(inflamed meninges)2 g q8hr IV6180 min9.4
Aqueous humor2 g IV131 to 3 hr11
Blister fluid1 g IV72 to 3 hr19.7
Lymphatic fluid1 g IV72 to 3 hr23.4
Bone2 g IV80.67 hr31.1
Heart muscle2 g IV3530 to 280 min12.7
Skin2 g IV2230 to 180 min6.6
Skeletal muscle2 g IV3530 to 280 min9.4
Myometrium2 g IV311 to 2 hr18.7

Microbiology

Mechanism of Action

Ceftazidime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftazidime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria.

Mechanism of Resistance

Resistance to ceftazidime is primarily through hydrolysis by beta-lactamase, alteration of penicillin-binding proteins (PBPs), and decreased permeability.

Interaction with Other Antimicrobials

In an in vitro study, antagonistic effects have been observed with the combination of chloramphenicol and ceftazidime.

Ceftazidime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section:

Gram-negative bacteria

Citrobacter species
Enterobacter species
Escherichia coli
Klebsiella species
Haemophilus influenzae
Neisseria meningitidis
Proteus mirabilis
Proteus vulgaris
Pseudomonas aeruginosa
Serratia species

Gram-positive bacteria

Staphylococcus aureus
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus agalactiae

Anaerobic bacteria

Bacteroides species (Note: many isolates of Bacteroides species are resistant)

The following in vitro data are available, but their clinical significance is unknown. At least 90 percent of the following microorganisms exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for ceftazidime. However, the efficacy of ceftazidime in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.

Gram-negative bacteria

Acinetobacter species
Citrobacter diversus
Citrobacter freundii
Providencia species (including Providencia rettgeri)
Salmonella species
Shigella species
Haemophilus parainfluenzae
Morganella morganii
Neisseria gonorrhoeae
Yersinia enterocolitica

Gram-positive bacteria

Staphylococcus epidermidis

Anaerobic bacteria

Clostridium species (Not including Clostridium difficile)
Peptostreptococcus species

Susceptibility Testing

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.

Find TAZICEF - VIAL medical information:

Find TAZICEF - VIAL medical information:

Our scientific content is evidence-based, scientifically balanced and non-promotional. It undergoes rigorous internal medical review and is updated regularly to reflect new information.

TAZICEF - VIAL Quick Finder

Prescribing Information
Download Prescribing Information

Health Professional Information

Clinical Pharmacology

CLINICAL PHARMACOLOGY

After IV administration of 500-mg and 1-g doses of ceftazidime over 5 minutes to normal adult male volunteers, mean peak serum concentrations of 45 and 90 mcg/mL, respectively, were achieved. After IV infusion of 500-mg, 1-g, and 2-g doses of ceftazidime over 20 to 30 minutes to normal adult male volunteers, mean peak serum concentrations of 42, 69, and 170 mcg/mL, respectively, were achieved. The average serum concentrations following IV infusion of 500-mg, 1-g, and 2-g doses to these volunteers over an 8-hour interval are given in Table 1

Table 1. Average Serum Concentrations of Ceftazidime
Ceftazidime IV DoseSerum Concentrations (mcg/mL)
0.5 hr1 hr2 hr4 hr8 hr
500 mg42251262
1 g603923113
2 g1297542135

The absorption and elimination of ceftazidime were directly proportional to the size of the dose. The half-life following IV administration was approximately 1.9 hours. Less than 10% of ceftazidime was protein bound. The degree of protein binding was independent of concentration. There was no evidence of accumulation of ceftazidime in the serum in individuals with normal renal function following multiple IV doses of 1 and 2 g every 8 hours for 10 days.

Following intramuscular (IM) administration of 500-mg and 1-g doses of ceftazidime to normal adult volunteers, the mean peak serum concentrations were 17 and 39 mcg/mL, respectively, at approximately 1 hour. Serum concentrations remained above 4 mcg/mL for 6 and 8 hours after the IM administration of 500-mg and 1-g doses, respectively. The half-life of ceftazidime in these volunteers was approximately 2 hours.

The presence of hepatic dysfunction had no effect on the pharmacokinetics of ceftazidime in individuals administered 2 g intravenously every 8 hours for 5 days. Therefore, a dosage adjustment from the normal recommended dosage is not required for patients with hepatic dysfunction, provided renal function is not impaired.

Approximately 80% to 90% of an IM or IV dose of ceftazidime is excreted unchanged by the kidneys over a 24-hour period. After the IV administration of single 500-mg or 1-g doses, approximately 50% of the dose appeared in the urine in the first 2 hours. An additional 20% was excreted between 2 and 4 hours after dosing, and approximately another 12% of the dose appeared in the urine between 4 and 8 hours later. The elimination of ceftazidime by the kidneys resulted in high therapeutic concentrations in the urine.

The mean renal clearance of ceftazidime was approximately 100 mL/min. The calculated plasma clearance of approximately 115 mL/min indicated nearly complete elimination of ceftazidime by the renal route. Administration of probenecid before dosing had no effect on the elimination kinetics of ceftazidime. This suggested that ceftazidime is eliminated by glomerular filtration and is not actively secreted by renal tubular mechanisms.

Since ceftazidime is eliminated almost solely by the kidneys, its serum half-life is significantly prolonged in patients with impaired renal function. Consequently, dosage adjustments in such patients as described in the DOSAGE AND ADMINISTRATION section are suggested.

Therapeutic concentrations of ceftazidime are achieved in the following body tissues and fluids.

Table 2. Ceftazidime Concentrations in Body Tissues and Fluids
Tissue or FluidDose/RouteNo. of PatientsTime of Sample Post DoseAverage Tissue or Fluid Level (mcg/mL or mcg/g)
Urine500 mg IM60 to 2 hr2,100
2 g IV60 to 2 hr12,000
Bile2 g IV390 min36.4
Synovial fluid2 g IV132 hr25.6
Peritoneal fluid2 g IV82 hr48.6
Sputum1 g IV81 hr9
Cerebrospinal fluid2 g q8hr IV5120 min9.8
(inflamed meninges)2 g q8hr IV6180 min9.4
Aqueous humor2 g IV131 to 3 hr11
Blister fluid1 g IV72 to 3 hr19.7
Lymphatic fluid1 g IV72 to 3 hr23.4
Bone2 g IV80.67 hr31.1
Heart muscle2 g IV3530 to 280 min12.7
Skin2 g IV2230 to 180 min6.6
Skeletal muscle2 g IV3530 to 280 min9.4
Myometrium2 g IV311 to 2 hr18.7

Microbiology

Mechanism of Action

Ceftazidime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftazidime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria.

Mechanism of Resistance

Resistance to ceftazidime is primarily through hydrolysis by beta-lactamase, alteration of penicillin-binding proteins (PBPs), and decreased permeability.

Interaction with Other Antimicrobials

In an in vitro study, antagonistic effects have been observed with the combination of chloramphenicol and ceftazidime.

Ceftazidime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section:

Gram-negative bacteria

Citrobacter species
Enterobacter species
Escherichia coli
Klebsiella species
Haemophilus influenzae
Neisseria meningitidis
Proteus mirabilis
Proteus vulgaris
Pseudomonas aeruginosa
Serratia species

Gram-positive bacteria

Staphylococcus aureus
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus agalactiae

Anaerobic bacteria

Bacteroides species (Note: many isolates of Bacteroides species are resistant)

The following in vitro data are available, but their clinical significance is unknown. At least 90 percent of the following microorganisms exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for ceftazidime. However, the efficacy of ceftazidime in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.

Gram-negative bacteria

Acinetobacter species
Citrobacter diversus
Citrobacter freundii
Providencia species (including Providencia rettgeri)
Salmonella species
Shigella species
Haemophilus parainfluenzae
Morganella morganii
Neisseria gonorrhoeae
Yersinia enterocolitica

Gram-positive bacteria

Staphylococcus epidermidis

Anaerobic bacteria

Clostridium species (Not including Clostridium difficile)
Peptostreptococcus species

Susceptibility Testing

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.

Resources

Didn’t find what you were looking for? Contact us.

MI Digital Assistant

Chat online with Pfizer Medical Information regarding your inquiry on a Pfizer medicine.

Call 800-438-1985*

*Speak with a Pfizer Medical Information Professional regarding your medical inquiry. Available 9AM-5PM ET Monday to Friday; excluding holidays.

Medical Inquiry

Submit a medical question for Pfizer prescription products.

Report Adverse Event

Pfizer Safety

To report an adverse event related to the Pfizer-BioNTech COVID-19 Vaccine, and you are not part of a clinical trial* for this product, click the link below to submit your information:

Pfizer Safety Reporting Site

*If you are involved in a clinical trial for this product, adverse events should be reported to your coordinating study site.

If you cannot use the above website, or would like to report an adverse event related to a different Pfizer product, please call Pfizer Safety at (800) 438-1985.

FDA Medwatch

You may also contact the U.S. Food and Drug Administration (FDA) directly to report adverse events or product quality concerns either online at www.fda.gov/medwatch or call (800) 822-7967.